CLINICAL STUDIES IN OLDER PATIENTS: PROBLEMS AND POSSIBILITIES

Marloes Derks, MD PhD student

Department of Surgery, Leiden University Medical Center, The Netherlands Department of Public Health, University of Copenhagen, Denmark How we like to think about our patients with breast cancer

How our patient population actually looks like

Our perception of patients with breast cancer has translated into our design of clinical trials

"We do not see things as they are, we see things as we are." Current clinical trials do not fit to the needs of the older population

Patient population in trials are not representative for the older population

Focussed on innitiation and intensification of treatment

• Well established end points are not appropriate and relevant for older patients

Underrepresentation of Older Patients with Cancer in Clinical Trials

Talarico et al, JCO, 2004

Trial population of corresponding age is not representative for general population

Older Trial Population

Older General Population

Poor External Validity of a Clinical Trial for older patients

Older Trial population

- Fewer Comorbidities
- Higher socio economic status
- More favourable tumor characteristics
- Lower overall mortality

compared to

Older General Population

Only 4% of current clinical trials for breast cancer are focussed on older patients

Clinical Trials Search Results

 Title Description with: Full Trial Description Custom 	in	Locations	🗖 Eli	gibility		
					Go	
Hide Search Criter	0					
nuc scarch chiten	d ^					
Cancer Type/Cone Trial Type: Treatn	dition: Bre	ast cancer, fem	ale			
Cancer Type/Cone Trial Type: Treatn	dition: Bre nent	ast cancer, fem	ale			
Cancer Type/Cone Trial Type: Treatn	dition: Bre hent	ast cancer, fem Ir search:	ale			
Cancer Type/Cond Trial Type: Treatn Results 1-25 of 35 Print Selected	dition: Bre hent 39 for you Refine	ast cancer, fema Ir search: Search	ale	t Over		
Cancer Type/Cond Trial Type: Treatn Results 1-25 of 35 Print Selected	dition: Bre hent 59 for you Refine	ast cancer, fema Ir search: Search	ale	t Over		

De Glas et al 2014

Current clinical trials do not fit to the needs of the older population

• Patient population in trials are not representative for the older population

Focussed on initiation and intensification of treatment

• Well established end points are not appropriate and relevant for older patients

Trial designs

Ommission of therapy might be a more clinically relevant question

Breast-conserving surgery with or without irradiation in women aged 65 years or older with early breast cancer (PRIME II): a randomised controlled trial

Ian H Kunkler, Linda J Williams, Wilma J L Jack, David A Cameron, J Michael Dixon, on behalf of the PRIME II investigators

Summary

Background For most older women with early breast cancer, standard treatment after breast-conserving surgery is adjuvant whole-breast radiotherapy and adjuvant endocrine treatment. We aimed to assess the effect omission of whole-breast radiotherapy would have on local control in older women at low risk of local recurrence at 5 years.

MAY 14, 2009

ESTABLISHED IN 1812

VC

VOL. 360 NO. 20

Adjuvant Chemotherapy in Older Women with Early-Stage Breast Cancer

Hyman B. Muss, M.D., Donald A. Berry, Ph.D., Constance T. Cirrincione, M.S., Maria Theodoulou, M.D., Ann M. Mauer, M.D., Alice B. Kornblith, Ph.D., Ann H. Partridge, M.D., M.P.H., Lynn G. Dressler, Ph.D.,
Harvey J. Cohen, M.D., Heather P. Becker, Patricia A. Kartcheske, B.S., Judith D. Wheeler, M.P.H., Edith A. Perez, M.D., Antonio C. Wolff, M.D., Julie R. Gralow, M.D., Harold J. Burstein, M.D., Ph.D., Ahmad A. Mahmood, M.D.,
Gustav Magrinat, M.D., Barbara A. Parker, M.D., Ronald D. Hart, M.D., Debjani Grenier, M.D., Larry Norton, M.D., Clifford A. Hudis, M.D., and Eric P. Winer, M.D., for the CALGB Investigators* Current clinical trials do not fit to the needs of the older population

• Patient population in trials are not representative for the older population

• Focussed on initiation and intensification of treatment

• Well established end points are not suitable and relevant for older patients

Trial outcomes

Clinical trials are focussed on cancer related outcomes

- <u>Disease free survival</u>: time to disease recurrence or death due to any cause
- <u>Recurrence free survival</u>: time to disease recurrence or death due to breast cancer
- <u>Progression free survival</u>: time to progression
- <u>Treatment Failure Free Survival:</u> time to early treatment discontinuation because of any reason other than death due to other cause

Using these endpoints in the older population

- Cancer related endpoints are influenced by competing causes of death
- Defining <u>cause of death</u> is challenging in older patients:
 - Some cancer treatments might also influence non-cancer-related deaths
 - Misclassification of cause of death in older patients
- But most of all: does it really matter to patients how they die?

If level A evidence is not helping us...

Use Level B!

Observational Data

- Advantages specifically for the older population:
 - Population based evidence
 - Survival analysis does not rely on cause of death

Relative Survival = excess mortality due to breast cancer

Overall survival of population with breast cancer Overall survival of matched background population

• Includes both death directly from breast cancer as well as treatment related death

An example

Treatment patterns and relative survival for older patients with non-metastatic breast cancer

An international comparison using the EURECCA database

To compare **locoregional and systemic treatment strategies** between European countries in patients aged 70 years and older with non-metastatic breast cancer

To compare **relative survival** between European countries in patients aged 70 years and older with non-metastic breast cancer

- Data selection
 - Population based national or regional data registry
 - Incidence years 2000 and onwards
 - Breast cancer TNM stage I-III
 - Women aged ≥ 70 years and older
- Comparing treatment strategies
 - Stratification according to stage of disease
 - Proportion of treatment (%) using descriptive statistics and chi-square test
- Comparing relative survival
 - Stratification according to stage of disease
 - Incidence years 2000-2010
 - Five year relative survival
 - Relative Excess Risk (RER)
 - · Adjusted for age, incidence year, grade, morphology

Data Registries

Country	Data	Incidence years	n
The Netherlands	National	2000-2010	39 704
Belgium	National	2003-2009	5 156
Ireland	National	2007-2008	3 931
Portugal North	Regional	2006-2010	654
Poland	Regional	2011-2014	516
England	National	2000-2014	69 164
Total			119 125

Stage I – Locoregional treatment

% Most extensive surgery

% Radiotherapy after BCS

Stage I – Systemic treatment

% (neo) Adjuvant endocrine therapy

% (neo) Adjuvant chemotherapy

Stage I – Relative survival

Stage II – Locoregional treatment

% Most extensive surgery

% Radiotherapy after BCS

Stage II – Systemic treatment

% (neo) Adjuvant endocrine therapy

% (neo) Adjuvant chemotherapy

Stage II – Relative survival

Stage III – Locoregional treatment

% Most extensive surgery

% Radiotherapy after BCS

Stage III – Systemic treatment

% (neo) Adjuvant endocrine therapy

% (neo) Adjuvant chemotherapy

Stage III – Relative survival

	5 year RS	95% CI	Adj RER	95% CI	p-value
NL	0.56	(0.54-0.58)	ref		
BE	0.65	(0.61-0.69)	0.78	(0.66-0.92)	0.004
IR	0.67	(0.59-0.74)	0.81	(0.64-1.02)	0.08
POR	0.72	(0.62-0.82)	0.78	(0.52-1.16)	0.222
EN	0.53	(0.52-0.55)	1.27	(1.17-1.37)	< 0.001

Highlights

Stage I

• Higher proportion of endocrine therapy is associated with improved survival

Stage II

 Higher proportion of systemic therapy (both chemotherapy and endocrine therapy) is associated with improved survival

Stage III

- High proportion of no surgery is not associated with decreased survival
- High proportion of chemotherapy is associated with improved survival

Limitations in data

- International differences in healthcare
- Regional data (selection) versus national data
- Missing data

Limitations in analysis

 Uncertainty regarding causality of the association between treatment strategies and survival outcomes

Findings from this study

Treatment strategies

- Large international differences in treatment strategies for older patients
- Most striking differences in systemic treatment

Survival outcomes

- International differences in five year relative survival outcomes for older patients
- Most striking difference in five year relative survival in stage III

Overall

- Higher proportion of systemic treatment is linked with improved five year relative survival
- Causal relation?

Final remarks

- Future clinical trials should be spefically designed for older patients:
 - Clinically relevant intervention for this population
 - Use overall survival and quality of life as primary endpoints
- Optimize the possibilities of observational data from cancer registries
 - More representative for the older population
 - Use international differences in treatment and survival as indications for optimization of existing treatment possibilities
 - Instrumental variable analysis as a pseudo randomization to directly assess treatment effects

Thank you for your attention