

Conflict of interest statement None

Indocyanine Green Angiography in Oncoplastic surgery

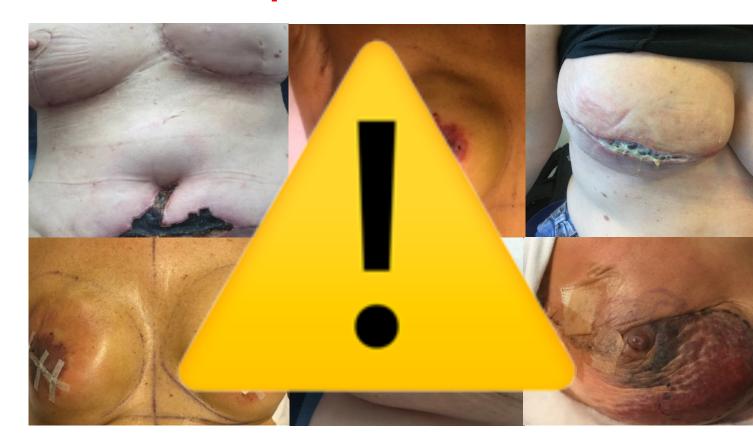
Is it relevant?

Elisabeth Lauritzen¹, Rikke Bredgaard², Cecilie Mullerup Laustsen-Kiel¹, Laura Hansen¹, Tove Tvedskov³ & Tine Engberg Damsgaard¹

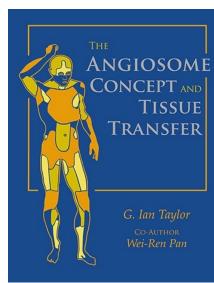
¹Department of Plastic Surgery and Burns Treatment, Copenhagen University Hospital ²Department of Plastic Surgery, Herlev Gentofte Hospital ³Department of Breast Surgery, Herlev Gentofte Hospital

Breast Cancer - Facts

- Most common cancer in women
- Number one cause of deaths in women
- 2.2 million women worldwide in 2020
- ~ 4500 women/year in Denmark


- Screening
- Increasingly more effective treatment
- Increasing number of survivors
- More women seek breast reconstruction

Breast reconstruction – Overall complications 10 – 40%


- Epidermolysis
- Necrosis
- Infection
- Hematoma
- Seroma
- Implant loss
- Flap loss

Reconstruction - It's all about the blood perfusion

- 1889 Marchot
- 1930 Salmon
- 1987 Taylor & Palmer
- Composite block of 3D tissue supplied by an artery

Angiosome territory

cutaneous perforator

Angiosome skin territory

source artery

British Journal of Plastic Surgery (1987), 40, 113-141 © 1987 The Trustees of British Association of Plastic Surgeons

The vascular territories (angiosomes) of the body: experimental study and clinical applications

G. I. TAYLOR and J. H. PALMER

Department of Plastic and Reconstructive Surgery, Royal Melbourne Hospital and Department of Anatomy, University of Melbourne

Indocyanine Green (Verdye®)

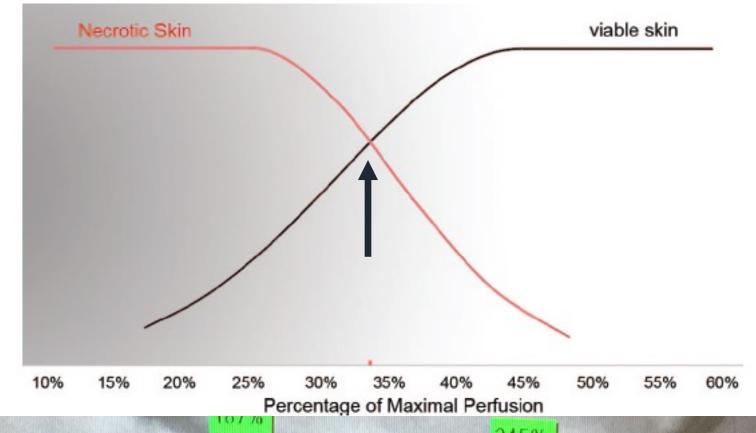
- Water soluble molecule
- Injected per-operatively
- Half-life 3-5 min.
- Can be repeated during surgery
- Excreted via the liver to the bile

Indocyanine Green Angiography

- Intraoperative imaging modality
- Real-time tissue perfusion
- Aids the surgeon in decision making
- Fluorescent near-infrared camera
- Cut-off perfusion score 33%

Be aware of:

- Anaphylactic shock 1:42.000
- Side-effects 0.34%:
 - Nausea
 - Dizziness
 - Discomfort
 - Rash
 - Sweating
- Extravasation



Review Article

Indocyanine green angiography in breast reconstruction: a narrative review

Predicting mastectomy skin flap necrosis with indocyanine green angiography: the gray area defined

Hunter R Moyer 1, Albert Losken

245%

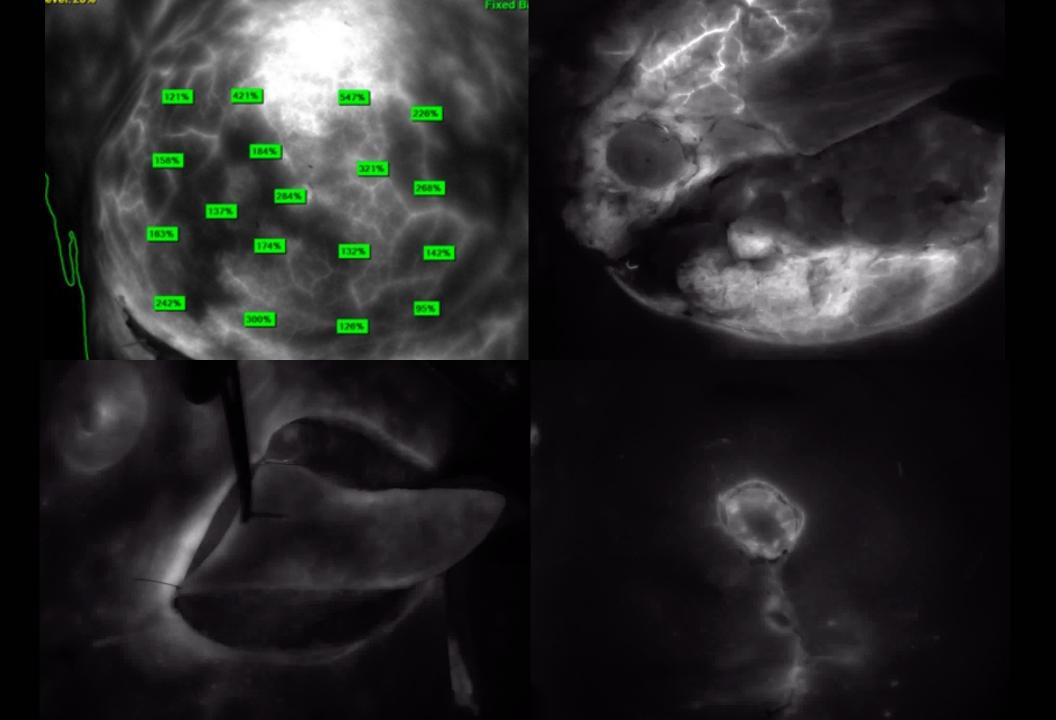
Quantification of the per-operative perfusion

SPY-Elite® imaging system

- Camera fixed on arm
- Steady measurement
- 20 cm from tissue
- Built in laser for optimal distance

SPY-PHI QP system

- Hand-held, lightweight camera
- 10-40 cm from tissue
- Large field of vision
- Independent of OR lighting
- Measurement not affected by contour of tissue



SPY Fluorescence Mode

Color Segmented Fluorescence (CSF) Mode

Use of peroperative ICG-A = lower risk of complications

Per- and postop. complications

BREAST: ORIGINAL ARTICLES

Trial

Complications leading to delayed adjuvant treatment A Systematic Review of the Utility of Indocyanine Angiography in Autologous Breast Reconstruction

Parmeshwar, Nisha MDa; Sultan, Steven M. MDb; Kim, Esther A. MDa; Piper, Merisa L. MDa

Author Information

Annals of Plastic Surgery: May 2021 - Volume 86 - Issue 5 - p 601-606 doi: 10.1097/SAP.00000000000002576

> Use of Indocyanine Green Angiography decreases the risk of complications in autologous- and implant-based breast reconstruction: A systematic review and meta-analysis

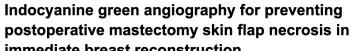
Elisabeth Lauritzen*, Tine Engberg Damsgaard

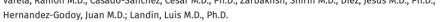
Department of Plastic Surgery and Burns Treatment, Copenhagen University Hospital, Denmark

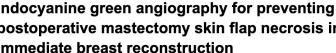
Published online 2020 Apr 22.

doi: 10.1002/14651858.CD013280.pub2

Cochrane Database Syst Rev. 2020 Apr; 2020(4): CD013280. PMID: 32320056

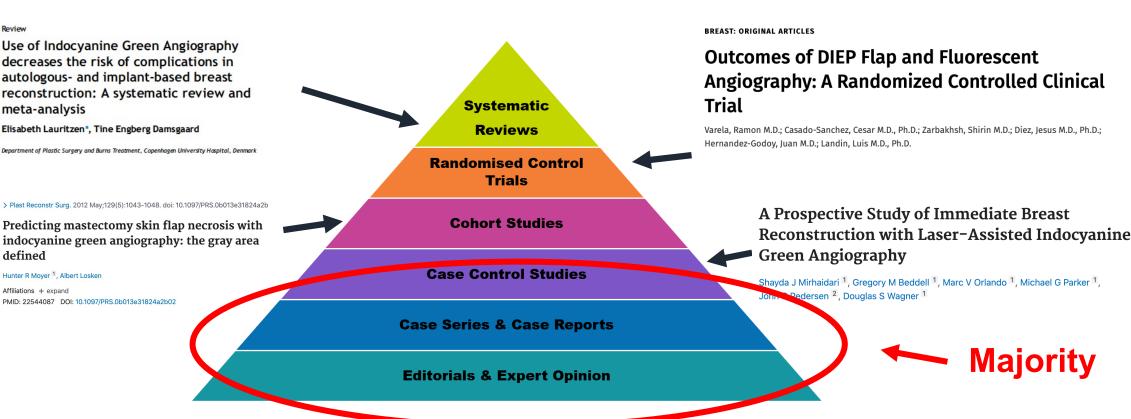

immediate breast reconstruction


Monitoring Editor: Tim Pruimboom, Rutger M Schols, Sander MJ Van Kuijk


Varela, Ramon M.D.; Casado-Sanchez, Cesar M.D., Ph.D.; Zarbakhsh, Shirin M.D.; Diez, Jesus M.D., Ph.D.;

Angiography: A Randomized Controlled Clinical

Outcomes of DIEP Flap and Fluorescent


ICG-A - level of evidence

Use of Indocyanine Green Angiography decreases the risk of complications in autologous- and implant-based breast reconstruction: A systematic review and meta-analysis Elisabeth Lauritzen*, Tine Engberg Damsgaard Department of Plastic Surgery and Burns Treatment, Copenhagen University Hospital, Denmark

Predicting mastectomy skin flap necrosis with indocyanine green angiography: the gray area defined

Hunter R Mover 1, Albert Losken

PMID: 22544087 DOI: 10.1097/PRS.0b013e31824a2b02

OBCS & ICG-A – what do we know?

Kijima et al. 2014


- Case-series
- Vol. replacement

Lauritzen et al. 2021

- Narrative review
- Vol. displacement + replacement

Lauritzen et al. 2022

Pilot-study

Further studies needed

Oncoplastic breast conserving surgery (OBCS)

First described late 1970'ies

Benelli

Clough

Galimberti

Comparative Study > Cancer. 1978 Oct;42(4):2045-53. doi: 10.1002/1097-0142(197810)42:4<2045::aid-cncr2820420455>3.0.co;2-8.

Conservative management of operable breast cancer: ten years experience at the Foundation Curie

R Calle, J P Pilleron, P Schlienger, J R Vilcog

PMID: 101299 DOI: 10.1002/1097-0142(197810)42:4<2045::aid-cncr2820420455>3.0.co;2-8

BCS vs. OBCS:

✓ Oncologic safety

✓ Surgical complications

Aesthetic outcome

Specialized breast centres

Review > Surg Oncol. 2022 Jun;42:101779. doi: 10.1016/j.suronc.2022.101779. Epub 2022 May 10.

Comparison of surgical and oncological outcomes between oncoplastic breast-conserving surgery versus conventional breast-conserving surgery for treatment of breast cancer: A systematic review and meta-analysis of 31 studies

Ali Yasen Y Mohamedahmed ¹, Shafquat Zaman ², Shaista Zafar ², Ishita Laroiya ², Javeria lobal 2, Melissa Lev Hui Tan 2, Geeta Shetty 2

Why use OBCS techniques?

Breast conserving surgery (BCS):

- Removing only enough tissue to secure free margins
- Up to 50% experience breast deformities!
- OBCS introduced to overcome this

Annals of

SURGICAL ONCOLOGY

OFFICIAL JOURNAL OF THE SOCIETY OF SURGICAL ONCOLOGY

Ann Surg Oncol (2010) 17:1375–1391 DOI 10.1245/s10434-009-0792-y

ORIGINAL ARTICLE - BREAST ONCOLOGY

Improving Breast Cancer Surgery: A Classification and Quadrant per Quadrant Atlas for Oncoplastic Surgery

Krishna B. Clough, MD, Gabriel J. Kaufman, MD, Claude Nos, MD, Ines Buccimazza, MD, and Isabelle M. Sarfati, MD

Oncoplastic breast conserving surgery (OBCS)

Volumen displacement

 Recruiting and transposing local dermoglandular flaps into the resection site

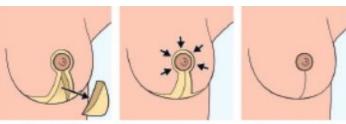


Figure 3 Volume displacement. Superior pedicie approach to reconstruct detect in inferior pole.

- Breast-flap advancement
- Mammaplasty (sup- / inf. pedicle)
- Centralization of NAC-complex
- •+/-contralat. surgery (reduction mammoplasty)



Figure 4 Volume displacement. Interior padicie approach to reconstruct central defect.

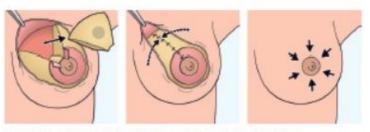


Figure 5 Volume displacement. Hound block approach to reconstruct puripheral defect.

Oncoplastic breast conserving surgery (OBCS)

Volumen replacement

 Importing volume from elsewhere to replace the amount of tissue resected

- Eg.:
 - LICAP-flap
 - LD-flap

Figure 1 Volume replacement. Latissimus dorsi myocutaneous miniflap used for reconstruction of lower sole defect.

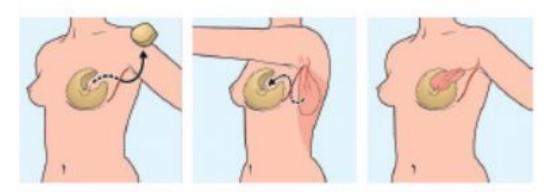


Figure 2 Volume replacement, Latissimus dorsi myosubcutaneous miniflap used for reconstruction of apper pole defect.

ICG-A for OBCS - a prospective observational study

Hypothesis:

- Use of ICG-A will optimize perfusion
- Reduce rates of postoperative infection and skin necrosis

ICG-A for OBCS - a prospective observational study

Primary endpoints:

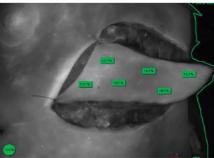
- Feasibility of ICG-A for OBCS
- Localize perforators and determine tissue supplied by the perforator
- Complications
 - ICG-A vs. post op. complications

Secondary endpoints:

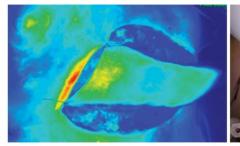
- Satisfaction with scars
- QoL
- Risk of developing lymphedema

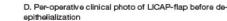
Methods

Study design:


Prospective observational

15 patients:


- Volume displacement- and replacement OBCS
- February 2020 to June 2021
- Dep. Plastic Surgery and Burns Treatment,
 Copenhagen University Hospital & Dep. Breast
 Surgery, Herlev Gentofte Hospital
- 1 year follow-up



A. ICG-A after raising the LICAP-flap before transposition,

B. Quantification and scoring of perfusion. Perfusion is

Review Article

Indocyanine green angiography in breast reconstruction: a narrative review

Elisabeth Lauritzen, Rikke Bredgaard, Christian Bonde, Lisa Toft Jensen, Tine Engberg Damsgaard

Methods

Peroperative ICG-A:

- Bolus 2.5 ml/mg Verdye® + 10 ml saline
- Perfusion values quantified after 45 sec.
- Relative perfusion cut-off score 33%

• 3 preset timepoints:

- 1. After lumpectomy
- 2. Upon dissection of perforators
- 3. After wound closure

Follow-up

- Clinical evaluation:
 - •Pre-op., 4 weeks, 4-6 months and 12 months postop.
 - Patient well-being
 - Clinical examination of surgical field
 - •POSAS
 - •BREAST-Q
 - Lymphedema measurements
 - Timing of adjuvant therapy

Results

- 11 patients included
- Mean age 59.2
- Mean BMI 25.9

- 7 volumen displacement OBCS
- 4 volumen replacement OBCS:
 - •3 LICAP
 - •1 msLD

Results

- Peroperative ICG-A:
 - Sufficient in 100%
 - No cases of necrosis or loss of OBCS
- Complications:
 - Major: none
 - •Minor: 9% (1 ptt.)
- Lymphedema: 0 ptt.
- Breast edema: 36.4% (4 ptt.)

- Delay in adjuvant treatment: 1 ptt.
 - Due to COVID-19
- Scar assessment (POSAS)
 - 4-weeks and 4-6 months
 - 1 year: No difference
- QoL (BREAST-Q)
 - 4-weeks 12 months
 - 1 year: No difference in pre- and postop. score

Breast edema – an underrepresented complication?

- 1 patient
 - Diagnosed at 4-6 months visit
- 3 patients
 - Diagnosed at 12 months

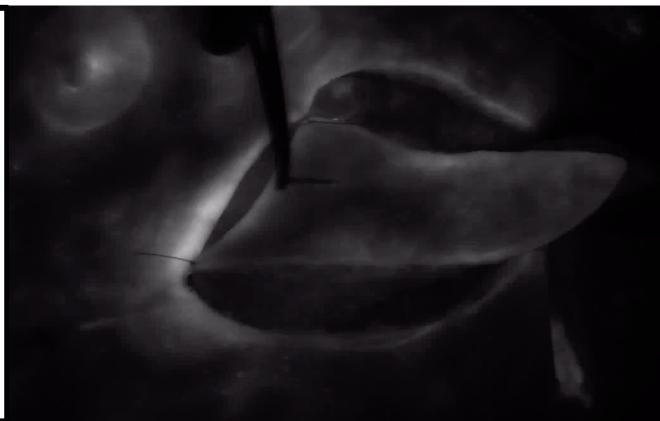
Table 2 C	ifi-		s and adjuvant treatr								
Patient no.	Age	BMI	Meno. Status	Diagnosis	SNB /ALD	Type of OBCS	Perop. ICG-A	Eventful healing	Adj. treatment	Adj. treatment on time? Y/N	Breast edema postop. Time of diagnosis.
1	53	31.6	Pre	Intraductal carcinoma	SN dxt.	Volume displacement	ОК	-	Radiation therapy	On time? N	-
2	71	27.3	Post	Intraductal carcinoma	SN dxt.	Volume displacement	ОК	=	None (patients' decision)	On time? Y	-
3	62	25.4	Post	Intraductal carcinoma	SN dxt.	Volume displacement	ОК	-	NACT, radiation therapy, antihormone	On time? Y	4-6- and 12 months postop.: Breast edema. Compression+deep oscillation treat.
4	47	24.6	Pre	DCIS	-	Volume replacement (LICAP flap)	ОК	-	Radiation therapy	On time? Y	-
5	63	25.8	Post	DCIS	SN dxt.	Volume replacement (msLD-flap)	ОК	-	Radiation therapy, antihormone	On time? Y	12 months postop.: Breast edema. Compression+deep oscillation treat.
6	68	26.2	Post	Intraductal carcinoma	SN dxt.	Volume displacement (bilat.)	ОК	-	Radiation therapy, antihormone	On time? Y	
7	59	24.5	Post	Intraductal carcinoma	SN dxt.	Volume displacement (bilat.)	ОК	-	Radiation therapy,	On time? Y	-
8	49	19.7	Pre	Intraductal carcinoma	SN + ALD dxt.	Volume replacement (LICAP flap)	ОК	-	NACT, radiation therapy	On time? Y	12 months postop.: Breast edema. No treat.
9	57	24.2	Post	DCIS	SN dxt.	Volume replacement (LICAP flap)	ОК	-	Radiation therapy	On time? Y	-
10	69	26	Post	Intraductal carcinoma	SN dxt.	Volume displacement (bilat.)	ОК	-	Chemo- and radiation therapy, antihormone	On time? Y	12 months postop.: Breast edema. Compression+manual drainage
11	53	29.6	Pre	DCIS	SN sin.	Volume displacement (bilat.)	ОК	Infection, seroma. Cons. treat.	Radiation therapy	On time? Y	-

Breast edema – an underrepresented complication?

- •4 of 11 patients → **36.4%**
- On the OBCS treated side
- All treated with postop. radiation therapy

Incidence reported: 28.2 – 32.7%

- <u>Independent risk factors:</u>
 - Radiation therapy
 - •OBCS
 - Axillary lymph node dissection
 - Large tumor size



Small sample size

Observational study

Further studies are needed

